Solutions of two Diophantine equations

 $3^x + 9^y = z^2$ **and** $13^x + 9^y = z^2$

Md. AI-Amin Khan¹, Abdur Rashid²,M.A.Halim³ and Md. Sharif Uddin⁴

 ¹Department of Mathematics, Jahangirnagar University, Bangladesh. E-mail: <u>alaminkhan@juniv.edu</u>
 ²Department of Mathematics, Jahangirnagar University, Bangladesh. E-mail: <u>arashedju@yahoo.com</u>
 ³Department of Natural Sciences, Daffodil International University, Bangladesh. E-mail: <u>abdulhalim359ju@gmail.com</u>
 ⁴Department of Mathematics, Jahangirnagar University, Bangladesh. E-mail: <u>msharifju@yahoo.com</u>

Abstract This paper is focused on solutions of two Diophantine equations of the type $p^x + 9^y = z^2$, where p is an odd prime number. We show that the Diophantine equation $3^x + 9^y = z^2$, where x, y and z are non-negative integers, has infinitely many solutions but $13^x + 9^y = z^2$ has no non-negative integer solution.

Keywords: Exponential Diophantine equation, Integer solutions.

1 INTRODUCTION

In recent, there have been a lot of studies about the Diophantine equation of the type $a^x + b^y = c^z$. In 2012, B. Sroysang [11] proved that (1,0,2) is a unique solution (x, y, z) for the Diophantine equation $3^x + 5^y = z^2$ where x, y and z are non-negative integers. In 2013, B. Sroysang [12] showed that the Diophantine equation $3^x + 17^y = z^2$ has a unique nonnegative integer solution (x, y, z) = (1,0,2). In the same year, B. Sroysang [9] found all the solutions to the Diophantine equation $2^x + 3^y = z^2$ where x, y and z are non-negative integers. The solutions (x, y, z) are (0,1,2), (3,0,3) and (4,2,5). In 2013, Rabago [8] showed that the solutions (x, y, z) of the

two Diophantine equations $3^x + 19^y = z^2$ and

$$3^x + 91^y = z^2$$
 where

x, y and z are non-negative integers are

 $\{(1,0,2), (4,1,10)\}$

and {(1,0,2), (2,1,10)}, respectively.

In literature, a good amount of research [1, 2, 3, 4, 5, 6, 7, 10] is available for solving different kind of Diophantine equations.

In the present paper, we study the two Diophantine

equations $3^{x} + 9^{y} = z^{2}$ and $13^{x} + 9^{y} = z^{2}$ and also find all solutions in non-negative integers.

2 Main Results

Theorem 2.1: The Diophantine equation $p^x + 1 = z^2$, where *p* is an odd prime number and *x*, *y*, *z* are nonnegative integers, is solvable only for p = 3. The solution is (x, z, p) = (1, 2, 3).

Proof: Let *x* and *z* be non-negative integers such that $p^x + 1 = z^2$, where *p* be an odd prime number. If x = 0, then $z^2 = 2$. It is impossible. If z = 0, then $p^x = -1$, which is also impossible. Now for x, z > 0,

$$p^{x} + 1 = z^{2}$$
or
$$p^{x} = z^{2} - 1 = (z - 1)(z + 1)$$
t
$$z + 1 = p^{\xi} \text{ and } z - 1 = p^{\psi}, \text{ where } \psi < \xi,$$

$$+ \xi = x. \text{ Then,}$$

 $p^{\psi}(p^{\xi-\psi}-1) = 2$ Thus, $p^{\psi} = 1 \Rightarrow p^{\psi} = p^{0} \Rightarrow \psi = 0$ and $p^{\xi-\psi}-1 = 2 \Rightarrow p^{\xi} = 3$, which is possible only for p = 3 and $\xi = 1$. So $x = \psi + \xi = 0 + 1 = 1$,

Le

Ψ

International Journal of Scientific & Engineering Research, Volume 7, Issue 1, January-2016 ISSN 2229-5518

 $z = p^{\xi} - 1 = 3^1 - 1 = 2.$

Therefore, (x, z, p) = (1,2,3) is the solution-

of $p^{x} + 1 = z^{2}$.

This proves the theorem.

Corollary 2.2: The Diophantine equation $3^x + 1 = z^2$ has exactly one non-negative integer solution (x, z) = (1, 2).

Corollary 2.3: The Diophantine equation $13^x + 1 = z^2$ has no non-negative integer solution.

Theorem 2.4: The Diophantine equation $1+9^x = z^2$ has no non-negative integer solution.

Proof: Suppose *x* and *z* be non-negative integers such that $1+9^x = z^2$. For x = 0, we have $z^2 = 2$. It is impossible. Let $x \ge 1$. Then $1+9^x = z^2$ gives us $3^{2x} = (z-1)(z+1)$. Let $z+1 = 3^{\Pi_1}$ and $z-1 = 3^{\Pi_2}$, where $\Pi_2 < \Pi_1$, $\Pi_1 + \Pi_2 = 2x$.

Therefore,

 $3^{\Pi_2} (3^{\Pi_1 - \Pi_2} - 1) = 2$

Thus, $3^{\Pi_2} = 1$ or $\Pi_2 = 0$ and $3^{\Pi_1 - \Pi_2} - 1 = 2$ or $\Pi_1 = 1$. So $2x = 1 \Rightarrow x = \frac{1}{2}$, which is not acceptable since *x* is a

non-negative integer. This completes the proof. **Theorem 2.5:** The Diophantine equation $3^x + 9^y = z^2$ has an infinitely many solutions of the form $(x, y, z) = (2m + 1, m, 2.3^m)$, where m is any nonnegative integer.

Proof: Suppose *x*, *y* and *z* be non-negative integers such that $3^x + 9^y = z^2$. If x = 0, then we have $1 + 9^y = z^2$ which has no solution by theorem 2.4. When y = 0 then by corollary 2.2, we have x = 1 and z = 2. Therefore, (1,0,2) is a solution to $3^x + 9^y = z^2$. If z = 0, then $3^x + 9^y = 0$, which is not possible for any non-negative integers *x* and *y*.

Now we consider the following remaining cases.

Case – 1: x = 1. If x = 1 then we have $3 + 9^y = z^2$ $\Rightarrow 3 = z^2 - (3^y)^2 \Rightarrow 3 = (z + 3^y)(z - 3^y)$.

If $(z+3^{y}) = 1$ and $(z-3^{y}) = 3$, then 2z = 4

 \Rightarrow *z* = 2 and 2 + 3^{*y*} = 1 \Rightarrow 3^{*y*} = -1, which is not possible. On the other hand, if

 $(z+3^y) = 3$ and $(z-3^y) = 1$, then $2z = 4 \implies z = 2$ and $2+3^y = 3 \implies 3^y = 1$, so y = 0. That is, we have (x, y, z) = (1,0,2) is a solution to $3^x + 9^y = z^2$.

Case – 2: y = 1. If y = 1, then $3^x + 9 = z^2$ $\Rightarrow 3^x = z^2 - 9 \Rightarrow 3^x = (z+3)(z-3)$. Let $3^{\xi} = z+3$ and $3^{\eta} = z - 3$, where $\xi > \eta, \xi + \eta = x$. Then $3^{\eta}(3^{\xi-\eta} - 1) = 2.3$

Thus,

 $3^{\eta} = 3 \Rightarrow \eta = 1 \text{ and } 3^{\xi-1} - 1 = 2 \Rightarrow 3^{\xi-1} = 3 \Rightarrow \xi = 2$. So, x = 1 + 2 = 3 and z = 6. That is, for y = 1, we have the solution (x, y, z) = (3, 1, 6).

Case – 3: z = 1. If z = 1, then $3^x + 9^y = 1$ which is not possible for any non-negative integers x and y.

Case – 4: x, y, z > 1. Now

$$3^{x} + 9^{y} = z^{2}$$

or
$$3^{x} = (z + 3^{y})(z - 3^{y})$$

Let $z + 3^{y} = 3^{\Pi_{1}}$ and $z - 3^{y} = 3^{\Pi_{2}}$, where $\Pi_{2} < \Pi_{1}$,
 $\Pi_{1} + \Pi_{2} = x$.

Then,

$$3^{\Pi_2} (3^{\Pi_1 - \Pi_2} - 1) = 2.3^y$$

Thus, $3^{\Pi_2} = 3^y$ or $\Pi_2 = y$ and $3^{\Pi_1 - y} - 1 = 2$ this gives us $\Pi_1 = y + 1$. Then, $z - 3^y = 3^y$ that is, $z = 2.3^y$ which is solvable only for if z is of the form 2.3^m , where m > 1 is any integer. Therefore,

 $2.3^m = 2.3^y \Longrightarrow y = m$, where m > 1 is any integer.

:
$$x = \Pi_1 + \Pi_2 = y + y + 1 = 2y + 1 = 2m + 1$$
 and $z = 2.3^m$.

Hence, for *x*, *y*, *z* > 1, the solution of the equation $3^x + 9^y = z^2$ is of the form $(x, y, z) = (2m+1, m, 2.3^m)$ where *m* is a positive integer such that *m* > 1.

Thus, when *x*, *y*, *z* are non-negative integers, solutions of the Diophantine equation $3^x + 9^y = z^2$ are given by $(x, y, z) = (2m + 1, m, 2.3^m)$, where *m* is any non-negative integer.

This completes the proof of the theorem.

Theorem 2.6. The Diophantine equation

 $13^{x} + 9^{y} = z^{2}$ has no non-negative integer solution. *Proof:* Suppose *x*, *y* and *z* are non-negative integers for which $13^{x} + 9^{y} = z^{2}$. If x = 0, we have $1 + 9^{y} = z^{2}$ which has no solution by theorem 2.4. For y = 0 we use corollary 2.3. If z = 0, then $13^{x} + 9^{y} = 0$ which is not possible for any non-negative integers *x* and *y*.

IJSER © 2016 http://www.ijser.org International Journal of Scientific & Engineering Research, Volume 7, Issue 1, January-2016 ISSN 2229-5518

Now we consider the following remaining cases. **Case – 1:** x = 1. If x = 1, then $13 + 9^{y} = z^{2}$ or $13 = (z + 3^{y})(z - 3^{y})$. We have two possibilities. If $z+3^{y}=13$ and $z-3^{y}=1$, it follows that 2z=14 or z = 7 and $3^{y} = 6$, a contradiction. On the other hand, $z + 3^y = 1$ and $z - 3^y = 13$, it follows that 2z = 14 or z = 7 and $3^y = -6$ which is impossible. **Case – 2:** y = 1. If y = 1, then $13^{x} + 9 = z^{2} \text{ or } 13^{x} = (z+3)(z-3)$. Let $z + 3 = 13^{\xi}$ and $z - 3 = 13^{\eta}$, where $\eta < \xi, \xi + \eta = x$. Then $13^{\xi} - 13^{\eta} = 2.3$ or $13^{\eta} (13^{\xi - \eta} - 1) = 2.3$. Thus, $13^{\eta} = 1$ and $13^{\xi - \eta} - 1 = 6$, then this implies that $\eta = 0$ and $13^{\xi} = 7$, a contradiction. **Case – 3:** z = 1. If z = 1, then $13^{x} + 9^{y} = 1$ which is not possible for any non-negative integers *x* and *y*. **Case – 4:** *x*, *y*, *z* > 1. Now $13^{x} + 9^{y} = z^{2}$ or $13^{x} = (z+3^{y})(z-3^{y})$ Let $z + 3^{y} = 13^{\Pi_{1}}$ and $z - 3^{y} = 13^{\Pi_{2}}$, where $\Pi_2 < \Pi_1, \Pi_1 + \Pi_2 = x$. So $13^{\Pi_1} - 13^{\Pi_2} = 2.3^{y}$ or $13^{\Pi_2}(13^{\Pi_1-\Pi_2}-1)=2.3^{y}$. Thus, $13^{\Pi_2} = 1 \text{ and } 13^{\Pi_1 - \Pi_2} - 1 = 2.3^y$ then these imply that $\Pi_2 = 0$ and $13^{\Pi_1} - 1 = 2.3^y$. Since $13 \equiv 1 \pmod{4}$, it follows that $13^{\Pi_1} \equiv 1 \pmod{4}$ i.e.,

 $13^{\Pi_1} - 1 \equiv 0 \pmod{4}$. But we see that $2.3^y \neq 0 \pmod{4}$. This is impossible.

3 Conclusion

In this paper, we have shown that the Diophantine equation $3^x + 9^y = z^2$ has an infinitely many solutions and all the solutions are given by $(x, y, z) = (2m + 1, m, 2.3^m)$, where *m* is any nonnegative integer. On the other hand, we have also found that the Diophantine equation $13^x + 9^y = z^2$ has no non-negative integer solution.

References

- [1] D. Acu, On a Diophantine equation $2^{x} + 5^{y} = z^{2}$, Gen. Math., 15 (2007), 145-148.
- [2] E.Catalan, Note extraite dune lettre adressee a lediteur, J. Reine Angew. Math.,27(1844), 192.

- [3] S. Chotchaisthit, On the Diophantine equation $4^{x} + p^{y} = z^{2}$ where *p* is a prime number, Amer. J. Math. Sci., 1 (2012), 191-193.
- [4] P. Mihailescu, Primary cycolotomic units and a proof of Catalan's conjecture, J. Reine Angew. Math., 27 (2004), 167-195.
- [5] A. Suvarnamani, Solutions of the Diophantine equation $2^{x} + p^{y} = z^{2}$, Int. J. Math. Sci. Appl., 1 (2011), 1415-1419.
- [6] A. Suvarnamani, A. Singta, S. Chotchaisthit, On two Diophantine equations $4^x + 7^y = z^2$ and $4^x + 11^y = z^2$, Sci. Technol. RMUTT J., 1 (2011), 25-28.
- [7] J. F. T. Rabago, More on the Diophantine equation of type $p^{x} + q^{y} = z^{2}$, Int. J. Math. Sci. Comp., 3 (2013), 15–16.
- [8] J. F. T. Rabago, On two Diophantine equations $3^x + 19^y = z^2$ and $3^x + 91^y = z^2$, Int. J. Math. Sci. Comp., 3 (2013), 28–29.
- [9] B. Sroysang, More on the Diophantine equation $2^{x} + 3^{y} = z^{2}$, Int. J. Pure Appl. Math., 84 (2013), 133–137.
- [10] B. Sroysang, More on the Diophantine equation $8^{x} + 19^{y} = z^{2}$, Int. J. Pure Appl. Math., 81 (2012), 601–604.
- **[11]** B. Sroysang, On the Diophantine equation $3^x + 5^y = z^2$, Int. J. Pure Appl. Math., 81 (2012), 605–608.
- **[12]** B. Sroysang, On the Diophantine equation $3^x + 17^y = z^2$, Int. J. Pure Appl. Math., 89 (2013), 111–114.