Solutions of two Diophantine equations
 $$
3^{\prime \prime}+9^{\prime}=z^{2} \text { and } 13^{\prime}+9^{y^{\prime}}=z^{2}
$$

Md. Al-Amin Khan ${ }^{1}$, Abdur Rashid²,M.A.Halim ${ }^{3}$ and Md. Sharif Uddin ${ }^{4}$
${ }^{1}$ Department of Mathematics, Jahangirnagar University, Bangladesh. E-mail: alaminkhan@juniv.edu
${ }^{2}$ Department of Mathematics, Jahangirnagar University, Bangladesh. E-mail: arashedju@yahoo.com
${ }^{3}$ Department of Natural Sciences, Daffodil International University, Bangladesh. E-mail: abdulhalim359ju@gmail.com
${ }^{4}$ Department of Mathematics, Jahangirnagar University, Bangladesh. E-mail: msharifju@yahoo.com

Abstract

This paper is focused on solutions of two Diophantine equations of the type $p^{x}+9^{y}=z^{2}$, where p is an odd prime number. We show that the Diophantine equation $3^{x}+9^{y}=z^{2}$, where x, y and z are non-negative integers, has infinitely many solutions but $13^{x}+9^{y}=z^{2}$ has no non-negative integer solution.

Keywords: Exponential Diophantine equation, Integer solutions.

1 Introduction

In recent, there have been a lot of studies about the Diophantine equation of the type $a^{x}+b^{y}=c^{z}$. In 2012, B. Sroysang [11] proved that $(1,0,2)$ is a unique solution (x, y, z) for the Diophantine equation $3^{x}+5^{y}=z^{2}$ where x, y and z are non-negative integers. In 2013, B. Sroysang [12] showed that the Diophantine equation $3^{x}+17^{y}=z^{2}$ has a unique nonnegative integer solution $(x, y, z)=(1,0,2)$. In the same year, B. Sroysang [9] found all the solutions to the Diophantine equation $2^{x}+3^{y}=z^{2}$ where x, y and z are non-negative integers. The solutions (x, y, z) are $(0,1,2),(3,0,3)$ and $(4,2,5)$. In 2013, Rabago [8] showed that the solutions (x, y, z) of the two Diophantine equations $3^{x}+19^{y}=z^{2}$ and $3^{x}+91^{y}=z^{2}$ where
x, y and z are non-negative integers are
$\{(1,0,2),(4,1,10)\}$
and $\{(1,0,2),(2,1,10)\}$, respectively.
In literature, a good amount of research $[1,2,3,4,5,6$, 7,10] is available for solving different kind of Diophantine equations.
In the present paper, we study the two Diophantine
equations $3^{x}+9^{y}=z^{2}$ and $13^{x}+9^{y}=z^{2}$ and also find all solutions in non-negative integers.

2 Main Results

Theorem 2.1: The Diophantine equation $p^{x}+1=z^{2}$, where p is an odd prime number and x, y, z are nonnegative integers, is solvable only for $p=3$. The solution is $(x, z, p)=(1,2,3)$.
Proof: Let x and z be non-negative integers such that $p^{x}+1=z^{2}$, where p be an odd prime number. If $x=0$, then $z^{2}=2$. It is impossible. If $z=0$, then $p^{x}=-1$, which is also impossible.
Now for $x, z>0$,

$$
\begin{array}{ll}
& p^{x}+1=z^{2} \\
\text { or } & p^{x}=z^{2}-1=(z-1)(z+1)
\end{array}
$$

Let $z+1=p^{\xi}$ and $z-1=p^{\psi}$, where $\psi<\xi$, $\psi+\xi=x$. Then,

$$
p^{\psi}\left(p^{\xi-\psi}-1\right)=2
$$

Thus, $p^{\psi}=1 \Rightarrow p^{\psi}=p^{0} \Rightarrow \psi=0$ and
$p^{\xi-\psi}-1=2 \Rightarrow p^{\xi}=3$, which is possible only for
$p=3$ and $\xi=1$. So $x=\psi+\xi=0+1=1$,
$z=p^{\xi}-1=3^{1}-1=2$.
Therefore, $(x, z, p)=(1,2,3)$ is the solution-
of $p^{x}+1=z^{2}$.
This proves the theorem.
Corollary 2.2: The Diophantine equation $3^{x}+1=z^{2}$ has exactly one non-negative integer solution $(x, z)=(1,2)$.
Corollary 2.3: The Diophantine equation $13^{x}+1=z^{2}$ has no non-negative integer solution.
Theorem 2.4: The Diophantine equation $1+9^{x}=z^{2}$ has no non-negative integer solution.
Proof: Suppose x and z be non-negative integers such that $1+9^{x}=z^{2}$. For $x=0$, we have $z^{2}=2$. It is impossible. Let $x \geq 1$. Then $1+9^{x}=z^{2}$ gives
us $3^{2 x}=(z-1)(z+1)$. Let $z+1=3^{\Pi_{1}}$ and $z-1=3^{\Pi_{2}}$,
where $\Pi_{2}<\Pi_{1}, \Pi_{1}+\Pi_{2}=2 x$.
Therefore,

$$
3^{\Pi_{2}}\left(3^{\Pi_{1}-\Pi_{2}}-1\right)=2
$$

Thus, $3^{\Pi_{2}}=1$ or $\Pi_{2}=0$ and $3^{\Pi_{1}-\Pi_{2}}-1=2$ or $\Pi_{1}=1$. So $2 x=1 \Rightarrow x=\frac{1}{2}$, which is not acceptable since x is a non-negative integer. This completes the proof.
Theorem 2.5: The Diophantine equation $3^{x}+9^{y}=z^{2}$ has an infinitely many solutions of the form $(x, y, z)=\left(2 m+1, m, 2.3^{m}\right)$, where m is any nonnegative integer.
Proof: Suppose x, y and z be non-negative integers such that $3^{x}+9^{y}=z^{2}$. If $x=0$, then we have $1+9^{y}=z^{2}$ which has no solution by theorem 2.4. When $y=0$ then by corollary 2.2 , we have $x=1$ and $z=2$. Therefore, $(1,0,2)$ is a solution to $3^{x}+9^{y}=z^{2}$. If $z=0$, then $3^{x}+9^{y}=0$, which is not possible for any non-negative integers x and y.
Now we consider the following remaining cases.
Case-1: $x=1$. If $x=1$ then we have $3+9^{y}=z^{2}$
$\Rightarrow 3=z^{2}-\left(3^{y}\right)^{2} \Rightarrow 3=\left(z+3^{y}\right)\left(z-3^{y}\right)$.
If $\left(z+3^{y}\right)=1$ and $\left(z-3^{y}\right)=3$, then $2 z=4$
$\Rightarrow z=2$ and $2+3^{y}=1 \Rightarrow 3^{y}=-1$, which is not possible. On the other hand, if
$\left(z+3^{y}\right)=3$ and $\left(z-3^{y}\right)=1$, then $2 z=4 \Rightarrow z=2$ and $2+3^{y}=3 \Rightarrow 3^{y}=1$, so $y=0$. That is, we have $(x, y, z)=(1,0,2)$ is a solution to $3^{x}+9^{y}=z^{2}$.

Case - 2: $y=1$. If $y=1$, then $3^{x}+9=z^{2}$
$\Rightarrow 3^{x}=z^{2}-9 \Rightarrow 3^{x}=(z+3)(z-3)$. Let $3^{\xi}=z+3$ and $3^{\eta}=z-3$, where $\xi>\eta, \xi+\eta=x$. Then

$$
3^{\eta}\left(3^{\xi-\eta}-1\right)=2.3
$$

Thus,
$3^{\eta}=3 \Rightarrow \eta=1$ and $3^{\xi-1}-1=2 \Rightarrow 3^{\xi-1}=3 \Rightarrow \xi=2$.
So, $x=1+2=3$ and $z=6$. That is, for $y=1$, we have the solution $(x, y, z)=(3,1,6)$.
Case $-3: z=1$. If $z=1$, then $3^{x}+9^{y}=1$ which is not possible for any non-negative integers x and y.
Case-4: $x, y, z>1$. Now

$$
\begin{array}{ll}
& 3^{x}+9^{y}=z^{2} \\
\text { or } \quad & 3^{x}=\left(z+3^{y}\right)\left(z-3^{y}\right)
\end{array}
$$

Let $z+3^{y}=3^{\Pi_{1}}$ and $z-3^{y}=3^{\Pi_{2}}$, where $\Pi_{2}<\Pi_{1}$,

$$
\Pi_{1}+\Pi_{2}=x .
$$

Then,

$$
3^{\Pi_{2}}\left(3^{\Pi_{1}-\Pi_{2}}-1\right)=2.3^{y}
$$

Thus, $3^{\Pi_{2}}=3^{y}$ or $\Pi_{2}=y$ and $3^{\Pi_{1}-y}-1=2$ this gives us $\Pi_{1}=y+1$. Then, $z-3^{y}=3^{y}$ that is, $z=2.3^{y}$ which is solvable only for if z is of the form 2.3^{m}, where $m>1$ is any integer. Therefore, $2.3^{m}=2.3^{y} \Rightarrow y=m$, where $m>1$ is any integer.
$\therefore x=\Pi_{1}+\Pi_{2}=y+y+1=2 y+1=2 m+1$ and
$z=2.3^{m}$.
Hence, for $x, y, z>1$, the solution of the equation $3^{x}+9^{y}=z^{2}$ is of the form $(x, y, z)=\left(2 m+1, m, 2.3^{m}\right)$ where m is a positive integer such that $m>1$.
Thus, when x, y, z are non-negative integers, solutions of the Diophantine equation $3^{x}+9^{y}=z^{2}$ are given by $(x, y, z)=\left(2 m+1, m, 2.3^{m}\right)$, where m is any nonnegative integer.
This completes the proof of the theorem.
Theorem 2.6. The Diophantine equation
$13^{x}+9^{y}=z^{2}$ has no non-negative integer solution.
Proof: Suppose x, y and z are non-negative integers for which $13^{x}+9^{y}=z^{2}$. If $x=0$, we have $1+9^{y}=z^{2}$ which has no solution by theorem 2.4. For $y=0$ we use corollary 2.3. If $z=0$, then $13^{x}+9^{y}=0$ which is not possible for any non-negative integers x and y.

Now we consider the following remaining cases.
Case - 1: $x=1$. If $x=1$, then $13+9^{y}=z^{2}$ or $13=\left(z+3^{y}\right)\left(z-3^{y}\right)$. We have two possibilities. If $z+3^{y}=13$ and $z-3^{y}=1$, it follows that $2 z=14$ or $z=7$ and $3^{y}=6$, a contradiction. On the other hand, $z+3^{y}=1$ and $z-3^{y}=13$, it follows that $2 z=14$ or $z=7$ and $3^{y}=-6$ which is impossible.
Case - 2: $y=1$. If $y=1$, then
$13^{x}+9=z^{2}$ or $13^{x}=(z+3)(z-3)$. Let $z+3=13^{\xi}$ and $z-3=13^{\eta}$, where $\eta<\xi, \xi+\eta=x$.
Then $13^{\xi}-13^{\eta}=2.3$ or $13^{\eta}\left(13^{\xi-\eta}-1\right)=2.3$. Thus, $13^{\eta}=1$ and $13^{\xi-\eta}-1=6$, then this implies that $\eta=0$ and $13^{\xi}=7$, a contradiction.
Case - 3: $z=1$. If $z=1$, then $13^{x}+9^{y}=1$ which is not possible for any non-negative integers x and y.
Case-4: $x, y, z>1$. Now

$$
13^{x}+9^{y}=z^{2} \text { or }
$$

$13^{x}=\left(z+3^{y}\right)\left(z-3^{y}\right)$
Let $z+3^{y}=13^{\Pi_{1}}$ and $z-3^{y}=13^{\Pi_{2}}$,
where $\Pi_{2}<\Pi_{1}, \Pi_{1}+\Pi_{2}=x$. So $13^{\Pi_{1}}-13^{\Pi_{2}}=2.3^{y}$ or $13^{\Pi_{2}}\left(13^{\Pi_{1}-\Pi_{2}}-1\right)=2.3^{y}$. Thus,
$13^{\Pi_{2}}=1$ and $13^{\Pi_{1}-\Pi_{2}}-1=2.3^{y}$ then these imply that $\Pi_{2}=0$ and $13^{\Pi_{1}}-1=2.3^{y}$. Since $13 \equiv 1(\bmod 4)$, it follows that $13^{\Pi_{1}} \equiv 1(\bmod 4)$ i.e., $13^{\Pi_{1}}-1 \equiv 0(\bmod 4)$. But we see that $2.3^{y} \not \equiv 0(\bmod 4)$. This is impossible.

3 Conclusion

In this paper, we have shown that the Diophantine equation $3^{x}+9^{y}=z^{2}$ has an infinitely many solutions and all the solutions are given by $(x, y, z)=\left(2 m+1, m, 2.3^{m}\right)$, where m is any nonnegative integer. On the other hand, we have also found that the Diophantine equation $13^{x}+9^{y}=z^{2}$ has no non-negative integer solution.

References

[1] D. Acu, On a Diophantine equation $2^{x}+5^{y}=z^{2}$, Gen. Math., 15 (2007), 145-148.
[2] E.Catalan, Note extraite dune lettre adressee a lediteur, J. Reine Angew. Math.,27(1844), 192.
[3] S. Chotchaisthit, On the Diophantine equation $4^{x}+p^{y}=z^{2}$ where p is a prime number, Amer. J. Math. Sci., 1 (2012), 191-193.
[4] P. Mihailescu, Primary cycolotomic units and a proof of Catalan's conjecture, J. Reine Angew. Math., 27 (2004), 167-195.
[5] A. Suvarnamani, Solutions of the Diophantine equation $2^{x}+p^{y}=z^{2}$, Int. J. Math. Sci. Appl., 1 (2011), 1415-1419.
[6] A. Suvarnamani, A. Singta, S. Chotchaisthit, On two Diophantine equations $4^{x}+7^{y}=z^{2} \quad$ and $4^{x}+11^{y}=z^{2}$, Sci. Technol. RMUTT J., 1 (2011), 2528.
[7] J. F. T. Rabago, More on the Diophantine equation of type $p^{x}+q^{y}=z^{2}$, Int. J. Math. Sci. Comp., 3 (2013), 15-16.
[8] J. F. T. Rabago, On two Diophantine equations $3^{x}+19^{y}=z^{2}$ and $3^{x}+91^{y}=z^{2}$, Int. J. Math. Sci. Comp., 3 (2013), 28-29.
[9] B. Sroysang, More on the Diophantine equation $2^{x}+3^{y}=z^{2}$, Int. J. Pure Appl. Math., 84 (2013), 133-137.
[10] B. Sroysang, More on the Diophantine equation $8^{x}+19^{y}=z^{2}$, Int. J. Pure Appl. Math., 81 (2012), 601-604.
[11] B. Sroysang, On the Diophantine equation $3^{x}+5^{y}=z^{2}$, Int. J. Pure Appl. Math., 81 (2012), 605-608.
[12] B. Sroysang, On the Diophantine equation $3^{x}+17^{y}=z^{2}$, Int. J. Pure Appl. Math., 89 (2013), 111-114.

